docopt Documentation
Release 0.2.0

Vladimir Keleshev

May 26, 2012

CONTENTS

Installation 3
API 5
Usage-message format 7
3.1 Usage-pattern format L. e e e e e e e e e e e e e e 7
3.2 Options-description format e e e e e e e e e 8

Development 11

docopt Documentation, Release 0.2.0

Note: since version 0.2 docopt parses both options and arguments, and is better than ever, however that lead to
some API incompatibility with 0.1 line.

Isn’t it awesome how optparse and argparse generate help and usage-messages based on your code?!

Hell no! You know what’s awesome? It’s when the option parser is generated based on the usage-message that you
write in a docstring! This way you don’t need to write this stupid repeatable parser-code, and instead can write a
beautiful usage-message (the way you want it), which adds readability to your code.

Imagine you are writing a program and thinking to allow it’s usage as follows:

Usage: prog [-vgrh] [FILE ...]
prog (--left | —-right) CORRECTION FILE

Using argparse you would end up writing something like this:

import argparse
import sys

def process_arguments () :
parser = argparse.ArgumentParser (
description='Process FILE and optionally apply correction to '
"either left-hand side or right-hand side.’)
parser.add_argument (' correction’, metavar=’'CORRECTION’, nargs='x’,
help=’correction angle, needs FILE, --left or '/
'——right to be present’)
parser.add_argument (' file’, metavar='FILE’, nargs='?’",
help='optional input file’)
parser.add_argument (' -v’, dest='v’, action=’store_true’,
help=’'verbose mode’)
parser.add_argument (' -g’, dest='qg’, action=’store_true’,
help='quiet mode’)
parser.add_argument (' -r’, dest='r’, action=’store_true’,
help='make report’)
left_or_right = parser.add_mutually_exclusive_group (required=False)
left_or_right.add_argument (' ——left’, dest=’left’, action=’'store_true’,
help='use left-hand side’)
left_or_right.add_argument (' ——right’, dest=’"right’, action=’store_true’,
help='use right-hand side’)
parser.parse_args ()
if (arguments.correction and not (arguments.left or arguments.right)
and not arguments.file):

arguments

sys.stderr.write(’correction angle, needs FILE, --left or —--right '
"to be present’)
parser.print_help()
return arguments

if name == '_main__'":
arguments process_arguments ()

While docopt allows you to write an awesome, readable, pythonic code like that:

"""Usage: prog [-vqrh] [FILE ...]
prog (—-—-left | —--right) CORRECTION FILE

Process FILE and optionally apply correction to either left-hand side or

CONTENTS 1

docopt Documentation, Release 0.2.0

right-hand side.

Arguments:
FILE optional input file
CORRECTION correction angle, needs FILE, --left or —--right to be present

Options:
-h —--help
% verbose mode
-g quiet mode
-r make report

-—left use left-hand side
—--right use right-hand side

mmwn

from docopt import docopt

r .

if _ name_ == '_ _main___
options, arguments = docopt (__doc_) # parse arguments based on docstring above

Almost magic! The option parser is generated based on docstring above, that you pass to docopt function. docopt
parses the usage-pattern ("Usage: ...") and options-description (lines starting with dash —) and ensures that
program invocation matches the ussage-pattern; it parses both options and arguments based on that. The basic idea is
that a good usage-message has all necessary information in it to make a parser.

Using docopt you stay DRY and follow pep257 at the same time:

The docstring of a script (a stand-alone program) should be usable as its “usage” message, printed when
the script is invoked with incorrect or missing arguments (or perhaps with a “-h” option, for “help”).

2 CONTENTS

http://www.python.org/dev/peps/pep-0257/

CHAPTER
ONE

INSTALLATION

Use pip or easy_install:

pip install docopt

Alternatively you can just drop docopt . py file into your project—it is self-contained. Get source on github.

docopt is tested with Python 2.6, 2.7, 3.2, and is known to work with other versions as well.

http://pip-installer.org
http://github.com/halst/docopt

docopt Documentation, Release 0.2.0

4 Chapter 1. Installation

CHAPTER
TWO

API

from docopt import docopt

docopt (doc[, argv=sys.argv[l1:]][, help=True][, version=None])
docopt takes 1 required and 3 optional arguments:

* doc should be a module docstring (__doc__) or some other string that describes usage-message in a human-
readable format, that will be parsed to create the option parser. The simple rules of how to write such a docstring
are given in next sections. Here is a quick example of such a string:

"""Usage: my_program.py [—hso FILE] [-—quiet | —--verbose] [INPUT ...]
-h --help show this

-s ——sorted sorted output

-o FILE specify output file [default: ./test.txt]

-—quiet print less text

—-—verbose print more text

mmmn

* argv is optional argument vector; by default it is the argument vector passed to your program
(sys.argv[1l:]). You can supply it with list of strings (similar to sys.argv) e.g. [’/ —--verbose’,
'—-o’, "hai.txt’].

* help, by default True, specifies whether the parser should automatically print the usage-message (supplied
as doc) and terminate, in case —h or ——help options are encountered. If you want to handle —h or ——help
options manually (as all other options), set help=False.

e version, by default None, is an optional argument that specifies the version of your program. If supplied,
then, if parser encounters ——version option, it will print the supplied version and terminate. version could
be any printable object, but most likely a string, e.g. "2.1.0rcl".

Note: when docopt is set to automatically handle -h, ——help and ——version options, you still need to mention
them in doc for your users to know about them.

The return value is a tuple options, arguments, where:
* options is a namespace with option values:
— leading dashes (-) are stripped: ——path => options.path
— longer variant is given precedence: —v —-verbose => options.verbose

— characters not allowed in names are substituted by underscore (_): --print-out =>
options.print_out,

docopt Documentation, Release 0.2.0

* arguments is a namespace with argument values:

— leading/trailing lower/greater-than signes (used by one convention) are stripped: <output> =>
arguments.output

— upper-case words (used by another convention) are lowered: PATH => arguments.path

— characters not allowed in names are substituted by underscore (_): <correction-angle> =>
arguments.correction_angle, HOST:PORT => arguments.host_port

Chapter 2. API

CHAPTER
THREE

USAGE-MESSAGE FORMAT

The main idea behind docopt is that a good usage-message (that describes options and arguments unambiguously)
is enough to generate a parser.

Here are the simple rules (that you probably already follow) for your usage-message to be parsable.
Usage-message consists of 2 parts:

* Usage-pattern, e.g.:
Usage: my_program.py [~hso FILE] [--quiet | --verbose] [INPUT ...]

* Option-description, e.g.:

-h —--help show this

-s ——sorted sorted output

-o FILE specify output file [default: ./test.txt]
-—quiet print less text

——verbose print more text

Their format is described below; other text is ignored. You can also take a look at more examples.

3.1 Usage-pattern format

Usage-pattern is a substring of doc that starts with usage: (not case-sensitive) and ends with visibly empty line.
Minimum example:

"""Usage: my_program.py
The first word after usage : is interpreted as your program’s name. You can specify your program’s name several
times to signify several exclusive patterns:

"""Usage: my_program.py FILE
my_program.py COUNT FILE

mwn

Each pattern can consist of following elements:

* Arguments are specified as either upper-case words, e.g. my_program.py CONTENT-PATH or words sur-
rounded by greater/less-than signs: my_program.py <content-path>.

https://github.com/halst/docopt/tree/master/examples

docopt Documentation, Release 0.2.0

* Options are words started with dash (-), e.g. ——output, —o. You can “stack” several of one-letter options,
e.g. —oiv which will be same as —o —i —v. Options can have arguments, e.g. ——input=FILE or —1i
FILE or even —iFILE. However it is important that you specify all options-descriptions (see next section) to
avoid ambiguity.

* Optional things. If option or argument is optional (not required), put it in brackets, e.g. my_program.py
[-hvgo FILE]

* Required things. If option or argument is required (not optional), don’t put it in squared brackets:
my_program.py —--path=PATH FILE. (Although “required options” might be not a good idea for your
users).

e Mutualy exclussive things. Use horisontal bar (|) to specify mutually exclussive things, and group them with
parenthesis (()): my_program.py (--clockwise | —-counter—-clockwise) TIME. You can
group with brackets ([]) to specify that neither of mutually exclussive things are required: my_program.py

[-—left | --right].

* One or more things. To specify that arbitrary number of repeating things could be accepted use ellipsis (. . .),
e.g. my_program.py FILE ... means one or more FILE-s are accepted. If you want to accept zero
or more things, use brackets, e.g.: my_program.py [FILE ...]. Ellipsis works as unary operator on
expression to the left.

If your usage-patterns allow to match same-named argument several times, parser will put matched values into a list,
e.g. in case pattern is my-program.py FILE FILE then arguments.file will be a list; in case pattern is
my-program.py FILE... itwill also be a list.

3.2 Options-description format

Options-description is a list of options that you put below your ussage-patterns. It is required to list all options that
are in ussage-patterns, their short/long versions (if any), and default values (if any).

* Every line in doc that starts with — or —— (not counting spaces) is treated as an option description, e.g.:

Options:
-—verbose # GOOD
-0 FILE # GOOD
Other: --bad # BAD, line does not start with dash "-"

¢ To specify that an option has an argument, put a word describing that argument after space (or equals = sign) as
shown below. You can use comma if you want to separate options. In the example below both lines are valid,
however you are recommended to stick to a single style.

-0 FILE --output=FILE # without comma, with "=" sign
-1 <file>, --input <file> # with comma, wihtout "=" sing

» Use two spaces to separate options with their informal description.

—--verbose More text. # BAD, will be treated as if verbose option had
an argument "More", so use 2 spaces instead

-q Quit. # GOOD

-o FILE Output file. # GOOD

—-—-stdout Use stdout. # GOOD, 2 spaces

* If you want to set a default value for an option with an argument, put it into the option description, in form
[default: <my-default-value>].

8 Chapter 3. Usage-message format

docopt Documentation, Release 0.2.0

——coefficient=K The K coefficient [default: 2.95]
——output=FILE Output file [default: test.txt]
——-directory=DIR Some directory [default: ./]

3.2. Options-description format 9

docopt Documentation, Release 0.2.0

10 Chapter 3. Usage-message format

CHAPTER
FOUR

DEVELOPMENT

docopt lives on github. Feel free to contribute, make pull requrests, report bugs, suggest ideas and discuss docopt
in “issues”. You can also drop me a line at vladimir @keleshev.com.

11

http://github.com/halst/docopt
mailto:vladimir@keleshev.com

	Installation
	API
	Usage-message format
	Usage-pattern format
	Options-description format

	Development

