
docopt Documentation
Release

Vladimir Keleshev

December 26, 2013

Contents

i

ii

docopt Documentation, Release

Note: New in version 0.4.0:

• option descriptions become optional,

• support for “--” and “-” commands.

Isn’t it awesome how optparse and argparse generate help messages based on your code?!

Hell no! You know what’s awesome? It’s when the option parser is generated based on the beautiful help message that
you write yourself! This way you don’t need to write this stupid repeatable parser-code, and instead can write only the
help message—the way you want it.

docopt helps you create most beautiful command-line interfaces easily:

"""Naval Fate.

Usage:
naval_fate.py ship new <name>...
naval_fate.py ship [<name>] move <x> <y> [--speed=<kn>]
naval_fate.py ship shoot <x> <y>
naval_fate.py mine (set|remove) <x> <y> [--moored|--drifting]
naval_fate.py -h | --help
naval_fate.py --version

Options:
-h --help Show this screen.
--version Show version.
--speed=<kn> Speed in knots [default: 10].
--moored Moored (anchored) mine.
--drifting Drifting mine.

"""
from docopt import docopt

if __name__ == ’__main__’:
arguments = docopt(__doc__, version=’Naval Fate 2.0’)
print(arguments)

Beat that! The option parser is generated based on the docstring above that is passed to docopt function. docopt
parses the usage pattern ("Usage: ...") and option descriptions (lines starting with dash -) and ensures that the
program invocation matches the ussage pattern; it parses options, arguments and commands based on that. The basic
idea is that a good help message has all necessary information in it to make a parser.

Also, pep257 recommends putting help message in the module docstrings.

Contents 1

http://www.python.org/dev/peps/pep-0257/

docopt Documentation, Release

2 Contents

CHAPTER 1

Installation

Use pip or easy_install:

pip install docopt

Alternatively, you can just drop docopt.py file into your project—it is self-contained. Get source on github.

docopt is tested with Python 2.5, 2.6, 2.7, 3.1, 3.2.

3

http://pip-installer.org
http://github.com/docopt/docopt

docopt Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

API

from docopt import docopt

docopt(doc[, argv=sys.argv[1:]][, help=True][, version=None])

docopt takes 1 required and 3 optional arguments:

• doc could be a module docstring (__doc__) or some other string that contains a help message that will be
parsed to create the option parser. The simple rules of how to write such a help message are given in next
sections. Here is a quick example of such a string:

"""Usage: my_program.py [-hso FILE] [--quiet | --verbose] [INPUT ...]

-h --help show this
-s --sorted sorted output
-o FILE specify output file [default: ./test.txt]
--quiet print less text
--verbose print more text

"""

• argv is an optional argument vector; by default it is the argument vector passed to your program
(sys.argv[1:]). You can supply it with the list of strings (similar to sys.argv) e.g. [’--verbose’,
’-o’, ’hai.txt’].

• help, by default True, specifies whether the parser should automatically print the help message (supplied as
doc) and terminate, in case -h or --help option is encountered (options should exist in usage pattern, more
on that below). If you want to handle -h or --help options manually (as other options), set help=False.

• version, by default None, is an optional argument that specifies the version of your program. If supplied,
then, (assuming --version option is mentioned in usage pattern) when parser encounters the --version
option, it will print the supplied version and terminate. version could be any printable object, but most likely
a string, e.g. "2.1.0rc1".

Note: when docopt is set to automatically handle -h, --help and --version options, you still need to mention
them in usage pattern for this to work. Also, for your users to know about them.

The return value is just a dictionary with options, arguments and commands, with keys spelled exactly like in a help
message (long versions of options are given priority). For example, if you invoke the top example as:

5

docopt Documentation, Release

naval_fate.py ship Guardian move 100 150 --speed=15

the return dictionary will be:

{’--drifting’: False, ’mine’: False,
’--help’: False, ’move’: True,
’--moored’: False, ’new’: False,
’--speed’: ’15’, ’remove’: False,
’--version’: False, ’set’: False,
’<name>’: [’Guardian’], ’ship’: True,
’<x>’: ’100’, ’shoot’: False,
’<y>’: ’150’}

This turns out to be the most straight-forward, unambiguous and readable format possible. You can instantly see that
args[’<name>’] is an argument, args[’--speed’] is an option, and args[’move’] is a command.

6 Chapter 2. API

CHAPTER 3

Help message format

Help message consists of 2 parts:

• Usage pattern, e.g.:

Usage: my_program.py [-hso FILE] [--quiet | --verbose] [INPUT ...]

• Option descriptions, e.g.:

-h --help show this
-s --sorted sorted output
-o FILE specify output file [default: ./test.txt]
--quiet print less text
--verbose print more text

Their format is described below; other text is ignored. Also, take a look at the beautiful examples.

3.1 Usage pattern format

Usage pattern is a substring of doc that starts with usage: (case-insensitive) and ends with a visibly empty line.
Minimum example:

"""Usage: my_program.py

"""

The first word after usage: is interpreted as your program’s name. You can specify your program’s name several
times to signify several exclusive patterns:

"""Usage: my_program.py FILE
my_program.py COUNT FILE

"""

Each pattern can consist of the following elements:

• <arguments>, ARGUMENTS. Arguments are specified as either upper-case words, e.g. my_program.py
CONTENT-PATH or words surrounded by angular brackets: my_program.py <content-path>.

• –options. Options are words started with dash (-), e.g. --output, -o. You can “stack” several of one-
letter options, e.g. -oiv which will be the same as -o -i -v. The options can have arguments, e.g.

7

https://github.com/docopt/docopt/tree/master/examples

docopt Documentation, Release

--input=FILE or -i FILE or even -iFILE. However it is important that you specify option descrip-
tions if you want for option to have an argument, a default value, or specify synonymous short/long versions of
option (see next section on option descriptions).

• commands are words that do not follow the described above conventions of --options or <arguments>
or ARGUMENTS, plus two special commands: dash “-” and double dash “--” (see below).

Use the following constructs to specify patterns:

• [] (brackets) optional elements. e.g.: my_program.py [-hvqo FILE]

• () (parens) required elements. All elements that are not put in [] are also required, e.g.: my_program.py
--path=<path> <file>... is the same as my_program.py (--path=<path> <file>...).
(Note, “required options” might be not a good idea for your users).

• | (pipe) mutualy exclussive elements. Group them using () if one of the mutually exclussive elements is
required: my_program.py (--clockwise | --counter-clockwise) TIME. Group them using
[] if none of the mutually-exclusive elements are required: my_program.py [--left | --right].

• ... (ellipsis) one or more elements. To specify that arbitrary number of repeating elements could be accepted,
use ellipsis (...), e.g. my_program.py FILE ... means one or more FILE-s are accepted. If you want
to accept zero or more elements, use brackets, e.g.: my_program.py [FILE ...]. Ellipsis works as a
unary operator on the expression to the left.

• [options] (case sensitive) shortcut for any options. You can use it if you want to specify that the usage pattern
could be provided with any options defined below in the option-descriptions and do not want to enumerate them
all in pattern.

• “[--]”. Double dash “--” is used by convention to separate positional arguments that can be mistaken for
options. In order to support this convention add “[--]” to you usage patterns.

• “[-]”. Single dash “-” is used by convention to signify that stdin is used instead of a file. To support this
add “[-]” to you usage patterns. “-” act as a normal command.

If your usage patterns allow to match the same-named argument several times, parser will put the matched values into
a list, e.g. in case the pattern is my-program.py FILE FILE then args[’FILE’] will be a list; in case the
pattern is my-program.py FILE... it will also be a list.

3.2 Option descriptions format

Option descriptions consist of a list of options that you put below your ussage patterns.

It is necessary to list option descriptions in order to specify:

• synonymous short and long options,

• if an option has an argument,

• if option’s argument has a default value.

The rules are as follows:

• Every line in doc that starts with - or -- (not counting spaces) is treated as an option description, e.g.:

Options:
--verbose # GOOD
-o FILE # GOOD

Other: --bad # BAD, line does not start with dash "-"

• To specify that option has an argument, put a word describing that argument after space (or equals = sign)
as shown below. Follow either <angular-brackets> or UPPER-CASE convention for options’ arguments. You

8 Chapter 3. Help message format

docopt Documentation, Release

can use comma if you want to separate options. In the example below, both lines are valid, however you are
recommended to stick to a single style.

-o FILE --output=FILE # without comma, with "=" sign
-i <file>, --input <file> # with comma, wihtout "=" sing

• Use two spaces to separate options with their informal description.

--verbose More text. # BAD, will be treated as if verbose option had
an argument "More", so use 2 spaces instead

-q Quit. # GOOD
-o FILE Output file. # GOOD
--stdout Use stdout. # GOOD, 2 spaces

• If you want to set a default value for an option with an argument, put it into the option-description, in form
[default: <my-default-value>].

--coefficient=K The K coefficient [default: 2.95]
--output=FILE Output file [default: test.txt]
--directory=DIR Some directory [default: ./]

3.2. Option descriptions format 9

docopt Documentation, Release

10 Chapter 3. Help message format

CHAPTER 4

Development

docopt lives on github.

We would love to hear what you think about docopt on our issues page.

Contribute, make pull requrests, report bugs, suggest ideas and discuss docopt. You can also drop a line directly to
vladimir@keleshev.com.

11

http://github.com/docopt/docopt
http://github.com/docopt/docopt/issues
mailto:vladimir@keleshev.com

docopt Documentation, Release

12 Chapter 4. Development

CHAPTER 5

Porting docopt to other languages

We think docopt is so good, we want to share it beyound the Python community!

Help develop Ruby port, CoffeeScript port, Lua port or create a port for your favorite language! You are encouraged
to use the Python version as a reference implementation. A Language-agnostic test suite is bundled with Python
implementation.

Porting discussion is on issues page.

13

http://github.com/docopt/docopt.rb
http://github.com/docopt/docopt.coffee
http://github.com/docopt/docopt.lua
http://github.com/docopt/docopt
http://github.com/docopt/docopt
http://github.com/docopt/docopt/issues

docopt Documentation, Release

14 Chapter 5. Porting docopt to other languages

CHAPTER 6

Changelog

docopt follows semantic versioning. The first release with stable API will be 1.0 (soon). Until then, you are
encouraged to specify explicitly the version in your dependency tools, e.g.:

pip install docopt==0.4.0

• 0.4.0 Option descriptions become optional, support for “--” and “-” commands.

• 0.3.0 Support for (sub)commands like git remote add. Introduce [options] shortcut for any options.
Incompatible changes: docopt returns dictionary.

• 0.2.0 Usage pattern matching. Positional arguments parsing based on usage patterns. Incompatible changes:
docopt returns namespace (for arguments), not list. Usage pattern is formalized.

• 0.1.0 Initial release. Options-parsing only (based on options description).

15

http://semver.org

